
6-October-2007 © Copyright Ian D. Romanick 2007

Data Structures & Algorithms for Geometry

Agenda:
● Introduce course

● Linear algebra primer

● Introduce bounding volumes
• General BV characteristics
• Axis-aligned bounding boxes

6-October-2007 © Copyright Ian D. Romanick 2007

What should you already know?
C++ and object oriented programming

6-October-2007 © Copyright Ian D. Romanick 2007

What should you already know?
C++ and object oriented programming

● For most assignments you will need to implement
classes that conform to a very specific interface.

6-October-2007 © Copyright Ian D. Romanick 2007

What should you already know?
C++ and object oriented programming

● For most assignments you will need to implement
classes that conform to a very specific interface.

Fundamental data structures

6-October-2007 © Copyright Ian D. Romanick 2007

What should you already know?
C++ and object oriented programming

● For most assignments you will need to implement
classes that conform to a very specific interface.

Fundamental data structures
● Most data structures for geometry are specialized

versions of linked lists, binary trees, etc.

6-October-2007 © Copyright Ian D. Romanick 2007

What should you already know?
C++ and object oriented programming

● For most assignments you will need to implement
classes that conform to a very specific interface.

Fundamental data structures
● Most data structures for geometry are specialized

versions of linked lists, binary trees, etc.

Some knowledge of linear algebra / vector
math.

6-October-2007 © Copyright Ian D. Romanick 2007

What should you already know?
C++ and object oriented programming

● For most assignments you will need to implement
classes that conform to a very specific interface.

Fundamental data structures
● Most data structures for geometry are specialized

versions of linked lists, binary trees, etc.

Some knowledge of linear algebra / vector
math.
● Can probably pick most of it up on the way, but be

prepared to work a little harder.

6-October-2007 © Copyright Ian D. Romanick 2007

What will you learn?
Creation and operations on bounding volumes.

6-October-2007 © Copyright Ian D. Romanick 2007

What will you learn?
Creation and operations on bounding volumes.

● Bounding sphere, AABB, and OBB may be
gibberish now, but they'll be second nature soon.

6-October-2007 © Copyright Ian D. Romanick 2007

What will you learn?
Creation and operations on bounding volumes.

● Bounding sphere, AABB, and OBB may be
gibberish now, but they'll be second nature soon.

Creation, traversal, and operations on bounding
volume hierarchies.

6-October-2007 © Copyright Ian D. Romanick 2007

What will you learn?
Creation and operations on bounding volumes.

● Bounding sphere, AABB, and OBB may be
gibberish now, but they'll be second nature soon.

Creation, traversal, and operations on bounding
volume hierarchies.
● This is where familiarity with tree structures is

important.

6-October-2007 © Copyright Ian D. Romanick 2007

What will you learn?
Creation and operations on bounding volumes.

● Bounding sphere, AABB, and OBB may be
gibberish now, but they'll be second nature soon.

Creation, traversal, and operations on bounding
volume hierarchies.
● This is where familiarity with tree structures is

important.

Creation and traversal of space partitions.

6-October-2007 © Copyright Ian D. Romanick 2007

What will you learn?
Creation and operations on bounding volumes.

● Bounding sphere, AABB, and OBB may be
gibberish now, but they'll be second nature soon.

Creation, traversal, and operations on bounding
volume hierarchies.
● This is where familiarity with tree structures is

important.

Creation and traversal of space partitions.
● Doom (the original) made BSP trees popular...now

you get to implement one.

6-October-2007 © Copyright Ian D. Romanick 2007

What will you learn? (cont.)
Representation and storage of polygons.

6-October-2007 © Copyright Ian D. Romanick 2007

What will you learn? (cont.)
Representation and storage of polygons.

● May seem trivial, but what if you want to operate on
all the polygons that share a vertex?

6-October-2007 © Copyright Ian D. Romanick 2007

What will you learn? (cont.)
Representation and storage of polygons.

● May seem trivial, but what if you want to operate on
all the polygons that share a vertex?

Numerical stability and geometrical robustness.

6-October-2007 © Copyright Ian D. Romanick 2007

What will you learn? (cont.)
Representation and storage of polygons.

● May seem trivial, but what if you want to operate on
all the polygons that share a vertex?

Numerical stability and geometrical robustness.
● Floating point math is inexact. This can cause

problems. Big problems.

6-October-2007 © Copyright Ian D. Romanick 2007

How will you be graded?
Bi-weekly quizzes worth 5 points each.

A final exam worth 50 points.

Bi-weekly programming assignments with 10
points each.

A term project worth 50 points.

6-October-2007 © Copyright Ian D. Romanick 2007

How will programs be graded?
First and foremost, does the program produce

the correct output?

Are appropriate algorithms and data-structures
used?

 Is the code readable and clear?

6-October-2007 © Copyright Ian D. Romanick 2007

Linear algebra primer
Three important data types:

● Scalar values

● Row / column vectors
• 1x4 and 4x1 are the sizes we'll most often encounter

● Square matrices
• 4x4 is the size we'll most often encounter

6-October-2007 © Copyright Ian D. Romanick 2007

Scalars
These are the numbers you know!

● Example: 3.14, 5.0, 99.9, 2, etc.

6-October-2007 © Copyright Ian D. Romanick 2007

Row vectors
These are special matrices that have multiple

columns but only one row.
● Example:

Add and subtract the way you would expect.
● Example:

● Both vectors must be the same size.

Operate with scalars the way you would expect.
● Example:

Notice that vector multiplication is missing...

[5.0 3.14 37]

[1 2 3][9 10 11]=[10 12 14]

3.2×[1 2 3]=[3.2 6.4 9.6]

6-October-2007 © Copyright Ian D. Romanick 2007

Column vectors
These are special matrices that have multiple

rows but only one column.
● Example:

Work just like row vectors.

[
1
2
3]

6-October-2007 © Copyright Ian D. Romanick 2007

Vector operations
There are only a few operations specific to

vectors that are really important for us.

6-October-2007 © Copyright Ian D. Romanick 2007

Dot Product
Noted as a “dot” between two vectors (e.g.,)

Also known as “inner product.”

Multiply matching elements, sum all the results.
● Example:

A⋅B

[2.3 1.2]⋅[1.7 6.5]=2.3∗1.71.2∗6.5=11.71

6-October-2007 © Copyright Ian D. Romanick 2007

Why is the dot product so interesting?
 In 3-space, the dot of two unit vectors is the

cosine of the angle between the two vectors.
● If the vectors are not already normalized (unit

length), we can divide the dot product by the
magnitudes.

● Example:
a⋅b
∣a∣∣b∣

=cos

6-October-2007 © Copyright Ian D. Romanick 2007

Vector Magnitude
Noted by vertical bars, like absolute value.

Take the square root of the dot product of the
vector with itself...like absolute value.

Result is the magnitude (a.k.a. length) of the
vector.
● Example:

∣[2
2

2
2]∣=[2

2
2
2]⋅[2

2
2
2]=

 2
2 

2

 2
2 

2

= 2
4


2
4
=1

6-October-2007 © Copyright Ian D. Romanick 2007

Normalize
Noted by dividing a vector by its magnitude.

● Example:

Results in a vector with the same direction, but
a magnitude of 1.0.

Works the same as with scalars.

A
∣A∣

6-October-2007 © Copyright Ian D. Romanick 2007

Cross Product
Noted as an X between two vectors (e.g.,)

Derivation of the cross product is not important.
The math is:

Only valid in 3-dimensions.

a×b

a×b=[a ybz−azb y azbx−axbz ax b y−a ybx]

6-October-2007 © Copyright Ian D. Romanick 2007

Why is the cross product so interesting?
Two really useful properties.

● The result of the cross product between two vectors
is a new vector that is perpendicular (also called
normal) to both vectors.

● If the source vectors are
normalized:

∣a×b∣=sin

6-October-2007 © Copyright Ian D. Romanick 2007

Matrices
Like vectors, but have multiple rows and

columns.
● Example:

Add and subtract like you would expect.
● Like vectors, both matrices must be the same

size...in both dimensions.

[
1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

]

6-October-2007 © Copyright Ian D. Romanick 2007

Matrix / vector multiplication
Special rules apply that make it different from

scalar multiplication.
●Not commutative! e.g.,

● Is associative. e.g.,

● Column count of first matrix must match row count
of second matrix.
• If M is a 4-by-3 matrix and N is a 3-by-1 matrix, we can

do , but not .

● If the source matrices are n-by-m and m-by-p, the
resulting matrix will be n-by-p.

M×N≠N×M

M×N N×M

NM P=N MP

6-October-2007 © Copyright Ian D. Romanick 2007

Matrix / vector multiplication (cont.)
To calculate an element of the matrix, C,

resulting from AB:

What does this look like?

C ij=r=1
n air brj

6-October-2007 © Copyright Ian D. Romanick 2007

Matrix / vector multiplication (cont.)
To calculate an element of the matrix, C,

resulting from AB:

What does this look like?
● The dot product of a row of A with a column of B.

● This is why the column count of A must match the
row count of B...otherwise the dot product wouldn't
work.

Cij=r=1
n air brj

6-October-2007 © Copyright Ian D. Romanick 2007

Transpose
Noted by a “T” in the exponent position

(e.g.,).

The rows become the columns, and the
columns become the rows.
● Example:

MT

[
2 3
4 5
6 7]

T

=[2 4 6
3 5 7]

6-October-2007 © Copyright Ian D. Romanick 2007

References
http://en.wikipedia.org/wiki/Matrix_multiplication

http://en.wikipedia.org/wiki/Dot_product

http://en.wikipedia.org/wiki/Cross_product

http://en.wikipedia.org/wiki/Matrix_multiplication
http://en.wikipedia.org/wiki/Dot_product
http://en.wikipedia.org/wiki/Cross_product

6-October-2007 © Copyright Ian D. Romanick 2007

Break

6-October-2007 © Copyright Ian D. Romanick 2007

Bounding Volumes
From Wikipedia:

“...a bounding volume for a set of objects is a closed
volume that completely contains the union of the
objects in the set.”

Why is this useful?

6-October-2007 © Copyright Ian D. Romanick 2007

Bounding Volumes
From Wikipedia:

“...a bounding volume for a set of objects is a closed
volume that completely contains the union of the
objects in the set.”

Why is this useful?
● We can represent complex geometry (a character

model with 50,000 polygons) with a simplified
approximation (a box with 6 polygons) that can be
tested more quickly.

● Since the representation is inexact, so is the test
result.

6-October-2007 © Copyright Ian D. Romanick 2007

Desirable BV Characteristics
 Inexpensive intersection tests

6-October-2007 © Copyright Ian D. Romanick 2007

Desirable BV Characteristics
 Inexpensive intersection tests

● The whole point of using a BV instead of the source
geometry is to speed up rejection / acceptance tests
between geometric objects.

6-October-2007 © Copyright Ian D. Romanick 2007

Desirable BV Characteristics
 Inexpensive intersection tests

Tight fitting to source geometry

6-October-2007 © Copyright Ian D. Romanick 2007

Desirable BV Characteristics
 Inexpensive intersection tests

Tight fitting to source geometry
● If the BV is a poor representation of the source

geometry, tests between BVs will result in many
false positives or false negatives.

6-October-2007 © Copyright Ian D. Romanick 2007

Desirable BV Characteristics
 Inexpensive intersection tests

Tight fitting to source geometry

 Inexpensive to compute

6-October-2007 © Copyright Ian D. Romanick 2007

Desirable BV Characteristics
 Inexpensive intersection tests

Tight fitting to source geometry

 Inexpensive to compute
● If the BV is too expensive to compute, it may cancel

out any speed-up that it provides.

6-October-2007 © Copyright Ian D. Romanick 2007

Desirable BV Characteristics
 Inexpensive intersection tests

Tight fitting to source geometry

 Inexpensive to compute

Easy to transform

6-October-2007 © Copyright Ian D. Romanick 2007

Desirable BV Characteristics
 Inexpensive intersection tests

Tight fitting to source geometry

 Inexpensive to compute

Easy to transform
● Most interesting objects move. If the object moves,

its BV needs to move with it. If it is too difficult /
expensive to move, it may cancel out the speed-up.

6-October-2007 © Copyright Ian D. Romanick 2007

Desirable BV Characteristics
 Inexpensive intersection tests

Tight fitting to source geometry

 Inexpensive to compute

Easy to transform

 Inexpensive to store

6-October-2007 © Copyright Ian D. Romanick 2007

Desirable BV Characteristics
 Inexpensive intersection tests

Tight fitting to source geometry

 Inexpensive to compute

Easy to transform

 Inexpensive to store
● If the BV requires too much space to store or too

much time to access, it can negatively impact
performance.

6-October-2007 © Copyright Ian D. Romanick 2007

Axis­aligned bounding box
One common BV is the axis-aligned bounding

box (AABB).

Just an n-dimensional box whose sides are
parallel to the axis and encloses all points.

6-October-2007 © Copyright Ian D. Romanick 2007

AABB Example

6-October-2007 © Copyright Ian D. Romanick 2007

AABB representation
Three common ways to represent an AABB

● All are equivalent, and each can easily be
converted to the other.

● Depending on the data used to create the AABB,
one representation may be easier to create than
another.

6-October-2007 © Copyright Ian D. Romanick 2007

Minimum / maximum point
class aabb_m_m {
 // Point such that for every
 // point P in the object:
 // (min.x <= P.x <= max.x) &&
 // (min.y <= P.y <= max.y) &&
 // (min.z <= P.z <= max.z)
 point min;
 point max;
};

6-October-2007 © Copyright Ian D. Romanick 2007

Min point / diameter
class aabb_m_d {
 // Point such that for every
 // point P in the object:
 // (min.x <= P.x) &&
 // (min.y <= P.y) &&
 // (min.z <= P.z)
 point min;

 // Size AABB in each dimension.
 point diameter;
};

6-October-2007 © Copyright Ian D. Romanick 2007

Center / radius
class aabb_c_r {
 // Center of the AABB.
 point center;

 // Distance from 'center' to each
 // side of the AABB.
 point radius;
};

6-October-2007 © Copyright Ian D. Romanick 2007

AABB­AABB Intersection
AABB-AABB intersection is just an interval

overlap test extended to n-dimensions.
● If there is no overlap in any dimension, the AABBs

cannot intersect.

Examples:
● Do A = { c = { 1, 1 }, r = { 1, 2 } } and B = { c = { 3,

4 }, r = { 1, 1 } } intersect?

6-October-2007 © Copyright Ian D. Romanick 2007

AABB­AABB Intersection
AABB-AABB intersection is just an interval

overlap test extended to n-dimensions.
● If there is no overlap in any dimension, the AABBs

cannot intersect.

Examples:
● Do A = { c = { 1, 1 }, r = { 1, 2 } } and B = { c = { 3,

4 }, r = { 1, 1 } } intersect?

● Do A = { c = { 1, 1 }, r = { 2, 2 } } and B = { c = { 3,
4 }, r = { 2, 2 } } intersect?

6-October-2007 © Copyright Ian D. Romanick 2007

AABB­AABB Intersection (cont.)
bool aabb_c_r::intersect(aabb_c_r &box)
{
 const point dist = center – box.center;
 const point rad = radius + box.radius;

 if (abs(dist[0]) > (rad[0])) return false;
 if (abs(dist[1]) > (rad[1])) return false;
 if (abs(dist[2]) > (rad[2])) return false;

 return true;
}

6-October-2007 © Copyright Ian D. Romanick 2007

AABB Creation
Creating an initial AABB from source data is a

trivial O(n) problem.

6-October-2007 © Copyright Ian D. Romanick 2007

AABB Creation
Creating an initial AABB from source data is a

trivial O(n) problem.
● Scan all of the points tracking the minimum and

maximum value in each dimension. Convert the
resulting values to the desired representation.

As the object moves, how can we update the
AABB?
● Rotations are the problem.

6-October-2007 © Copyright Ian D. Romanick 2007

AABB from Bounding Sphere
For a given rotation:

1.Create a sphere centered at the point of rotation
that encompasses the object.

2.Create an AABB from that sphere.

Merits and drawbacks of this technique?

6-October-2007 © Copyright Ian D. Romanick 2007

AABB from Bounding Sphere
For a given rotation:

1.Create a sphere centered at the point of rotation
that encompasses the object.

2.Create an AABB from that sphere.

Merits and drawbacks of this technique?
● Fast to compute.

● Only works well if the object has a single pivot point.

● Creates a very loose AABB.

● Why not just use the bounding sphere?!?

6-October-2007 © Copyright Ian D. Romanick 2007

AABB from Source Data
Recalculate the AABB from the transformed

source data.
● Don't actually transform the points. Instead

transform the axis use for the comparisons.

Merits and drawbacks of this technique?

6-October-2007 © Copyright Ian D. Romanick 2007

AABB from Source Data
Recalculate the AABB from the transformed

source data.
● Don't actually transform the points. Instead

transform the axis use for the comparisons.

Merits and drawbacks of this technique?
● Creates a tight fitting AABB.

● O(n) per transformation can be too expensive.
• Can be optimized using other search structures and / or a

convex hull.
• More about convex hulls next week.

6-October-2007 © Copyright Ian D. Romanick 2007

AABB by Hill­climbing
Track the six points at the extrema of the AABB

To update, examine the neighboring points to
search for the new extrema.

Merits and drawbacks of this technique?

6-October-2007 © Copyright Ian D. Romanick 2007

AABB by Hill­climbing
Track the six points at the extrema of the AABB

To update, examine the neighboring points to
search for the new extrema.

Merits and drawbacks of this technique?
● Creates a tight fitting AABB.

● Fast, but...

● Requires precalculation of a convex hull

● Requires a data structure that stores connectivity
among points

6-October-2007 © Copyright Ian D. Romanick 2007

AABB from Rotated AABB
Transform the original AABB and compute its

AABB.

Merits and drawbacks of this technique?

6-October-2007 © Copyright Ian D. Romanick 2007

AABB from Rotated AABB
Transform the original AABB and compute its

AABB.

Merits and drawbacks of this technique?
● Fast.

● Not a very tight fitting AABB.

● Very commonly used.

6-October-2007 © Copyright Ian D. Romanick 2007

References
http://en.wikipedia.org/wiki/Bounding_volume

http://en.wikipedia.org/wiki/Bounding_volume

6-October-2007 © Copyright Ian D. Romanick 2007

Next week...
More bounding volumes...

● Bounding spheres

● Oriented bounding boxes

● k-DOPs

● Convex hulls

Something we can do with our BVs!

First programming assignment will be assigned.

6-October-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not necessarily

represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

