
6-October-2007 © Copyright Ian D. Romanick 2007

Data Structures & Algorithms for Geometry

Agenda:
● Introduce course

● Linear algebra primer

● Introduce bounding volumes
• General BV characteristics
• Axis-aligned bounding boxes

6-October-2007 © Copyright Ian D. Romanick 2007

What should you already know?
C++ and object oriented programming

6-October-2007 © Copyright Ian D. Romanick 2007

What should you already know?
C++ and object oriented programming

● For most assignments you will need to implement
classes that conform to a very specific interface.

6-October-2007 © Copyright Ian D. Romanick 2007

What should you already know?
C++ and object oriented programming

● For most assignments you will need to implement
classes that conform to a very specific interface.

Fundamental data structures

6-October-2007 © Copyright Ian D. Romanick 2007

What should you already know?
C++ and object oriented programming

● For most assignments you will need to implement
classes that conform to a very specific interface.

Fundamental data structures
● Most data structures for geometry are specialized

versions of linked lists, binary trees, etc.

6-October-2007 © Copyright Ian D. Romanick 2007

What should you already know?
C++ and object oriented programming

● For most assignments you will need to implement
classes that conform to a very specific interface.

Fundamental data structures
● Most data structures for geometry are specialized

versions of linked lists, binary trees, etc.

Some knowledge of linear algebra / vector
math.

6-October-2007 © Copyright Ian D. Romanick 2007

What should you already know?
C++ and object oriented programming

● For most assignments you will need to implement
classes that conform to a very specific interface.

Fundamental data structures
● Most data structures for geometry are specialized

versions of linked lists, binary trees, etc.

Some knowledge of linear algebra / vector
math.
● Can probably pick most of it up on the way, but be

prepared to work a little harder.

6-October-2007 © Copyright Ian D. Romanick 2007

What will you learn?
Creation and operations on bounding volumes.

6-October-2007 © Copyright Ian D. Romanick 2007

What will you learn?
Creation and operations on bounding volumes.

● Bounding sphere, AABB, and OBB may be
gibberish now, but they'll be second nature soon.

6-October-2007 © Copyright Ian D. Romanick 2007

What will you learn?
Creation and operations on bounding volumes.

● Bounding sphere, AABB, and OBB may be
gibberish now, but they'll be second nature soon.

Creation, traversal, and operations on bounding
volume hierarchies.

6-October-2007 © Copyright Ian D. Romanick 2007

What will you learn?
Creation and operations on bounding volumes.

● Bounding sphere, AABB, and OBB may be
gibberish now, but they'll be second nature soon.

Creation, traversal, and operations on bounding
volume hierarchies.
● This is where familiarity with tree structures is

important.

6-October-2007 © Copyright Ian D. Romanick 2007

What will you learn?
Creation and operations on bounding volumes.

● Bounding sphere, AABB, and OBB may be
gibberish now, but they'll be second nature soon.

Creation, traversal, and operations on bounding
volume hierarchies.
● This is where familiarity with tree structures is

important.

Creation and traversal of space partitions.

6-October-2007 © Copyright Ian D. Romanick 2007

What will you learn?
Creation and operations on bounding volumes.

● Bounding sphere, AABB, and OBB may be
gibberish now, but they'll be second nature soon.

Creation, traversal, and operations on bounding
volume hierarchies.
● This is where familiarity with tree structures is

important.

Creation and traversal of space partitions.
● Doom (the original) made BSP trees popular...now

you get to implement one.

6-October-2007 © Copyright Ian D. Romanick 2007

What will you learn? (cont.)
Representation and storage of polygons.

6-October-2007 © Copyright Ian D. Romanick 2007

What will you learn? (cont.)
Representation and storage of polygons.

● May seem trivial, but what if you want to operate on
all the polygons that share a vertex?

6-October-2007 © Copyright Ian D. Romanick 2007

What will you learn? (cont.)
Representation and storage of polygons.

● May seem trivial, but what if you want to operate on
all the polygons that share a vertex?

Numerical stability and geometrical robustness.

6-October-2007 © Copyright Ian D. Romanick 2007

What will you learn? (cont.)
Representation and storage of polygons.

● May seem trivial, but what if you want to operate on
all the polygons that share a vertex?

Numerical stability and geometrical robustness.
● Floating point math is inexact. This can cause

problems. Big problems.

6-October-2007 © Copyright Ian D. Romanick 2007

How will you be graded?
Bi-weekly quizzes worth 5 points each.

A final exam worth 50 points.

Bi-weekly programming assignments with 10
points each.

A term project worth 50 points.

6-October-2007 © Copyright Ian D. Romanick 2007

How will programs be graded?
First and foremost, does the program produce

the correct output?

Are appropriate algorithms and data-structures
used?

 Is the code readable and clear?

6-October-2007 © Copyright Ian D. Romanick 2007

Linear algebra primer
Three important data types:

● Scalar values

● Row / column vectors
• 1x4 and 4x1 are the sizes we'll most often encounter

● Square matrices
• 4x4 is the size we'll most often encounter

6-October-2007 © Copyright Ian D. Romanick 2007

Scalars
These are the numbers you know!

● Example: 3.14, 5.0, 99.9, 2, etc.

6-October-2007 © Copyright Ian D. Romanick 2007

Row vectors
These are special matrices that have multiple

columns but only one row.
● Example:

Add and subtract the way you would expect.
● Example:

● Both vectors must be the same size.

Operate with scalars the way you would expect.
● Example:

Notice that vector multiplication is missing...

[5.0 3.14 37]

[1 2 3][9 10 11]=[10 12 14]

3.2×[1 2 3]=[3.2 6.4 9.6]

6-October-2007 © Copyright Ian D. Romanick 2007

Column vectors
These are special matrices that have multiple

rows but only one column.
● Example:

Work just like row vectors.

[
1
2
3]

6-October-2007 © Copyright Ian D. Romanick 2007

Vector operations
There are only a few operations specific to

vectors that are really important for us.

6-October-2007 © Copyright Ian D. Romanick 2007

Dot Product
Noted as a “dot” between two vectors (e.g.,)

Also known as “inner product.”

Multiply matching elements, sum all the results.
● Example:

A⋅B

[2.3 1.2]⋅[1.7 6.5]=2.3∗1.71.2∗6.5=11.71

6-October-2007 © Copyright Ian D. Romanick 2007

Why is the dot product so interesting?
 In 3-space, the dot of two unit vectors is the

cosine of the angle between the two vectors.
● If the vectors are not already normalized (unit

length), we can divide the dot product by the
magnitudes.

● Example:
a⋅b
∣a∣∣b∣

=cos

6-October-2007 © Copyright Ian D. Romanick 2007

Vector Magnitude
Noted by vertical bars, like absolute value.

Take the square root of the dot product of the
vector with itself...like absolute value.

Result is the magnitude (a.k.a. length) of the
vector.
● Example:

∣[2
2

2
2]∣=[2

2
2
2]⋅[2

2
2
2]=

 2
2

2

 2
2

2

= 2
4

2
4
=1

6-October-2007 © Copyright Ian D. Romanick 2007

Normalize
Noted by dividing a vector by its magnitude.

● Example:

Results in a vector with the same direction, but
a magnitude of 1.0.

Works the same as with scalars.

A
∣A∣

6-October-2007 © Copyright Ian D. Romanick 2007

Cross Product
Noted as an X between two vectors (e.g.,)

Derivation of the cross product is not important.
The math is:

Only valid in 3-dimensions.

a×b

a×b=[a ybz−azb y azbx−axbz ax b y−a ybx]

6-October-2007 © Copyright Ian D. Romanick 2007

Why is the cross product so interesting?
Two really useful properties.

● The result of the cross product between two vectors
is a new vector that is perpendicular (also called
normal) to both vectors.

● If the source vectors are
normalized:

∣a×b∣=sin

6-October-2007 © Copyright Ian D. Romanick 2007

Matrices
Like vectors, but have multiple rows and

columns.
● Example:

Add and subtract like you would expect.
● Like vectors, both matrices must be the same

size...in both dimensions.

[
1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

]

6-October-2007 © Copyright Ian D. Romanick 2007

Matrix / vector multiplication
Special rules apply that make it different from

scalar multiplication.
●Not commutative! e.g.,

● Is associative. e.g.,

● Column count of first matrix must match row count
of second matrix.
• If M is a 4-by-3 matrix and N is a 3-by-1 matrix, we can

do , but not .

● If the source matrices are n-by-m and m-by-p, the
resulting matrix will be n-by-p.

M×N≠N×M

M×N N×M

NM P=N MP

6-October-2007 © Copyright Ian D. Romanick 2007

Matrix / vector multiplication (cont.)
To calculate an element of the matrix, C,

resulting from AB:

What does this look like?

C ij=r=1
n air brj

6-October-2007 © Copyright Ian D. Romanick 2007

Matrix / vector multiplication (cont.)
To calculate an element of the matrix, C,

resulting from AB:

What does this look like?
● The dot product of a row of A with a column of B.

● This is why the column count of A must match the
row count of B...otherwise the dot product wouldn't
work.

Cij=r=1
n air brj

6-October-2007 © Copyright Ian D. Romanick 2007

Transpose
Noted by a “T” in the exponent position

(e.g.,).

The rows become the columns, and the
columns become the rows.
● Example:

MT

[
2 3
4 5
6 7]

T

=[2 4 6
3 5 7]

6-October-2007 © Copyright Ian D. Romanick 2007

References
http://en.wikipedia.org/wiki/Matrix_multiplication

http://en.wikipedia.org/wiki/Dot_product

http://en.wikipedia.org/wiki/Cross_product

http://en.wikipedia.org/wiki/Matrix_multiplication
http://en.wikipedia.org/wiki/Dot_product
http://en.wikipedia.org/wiki/Cross_product

6-October-2007 © Copyright Ian D. Romanick 2007

Break

6-October-2007 © Copyright Ian D. Romanick 2007

Bounding Volumes
From Wikipedia:

“...a bounding volume for a set of objects is a closed
volume that completely contains the union of the
objects in the set.”

Why is this useful?

6-October-2007 © Copyright Ian D. Romanick 2007

Bounding Volumes
From Wikipedia:

“...a bounding volume for a set of objects is a closed
volume that completely contains the union of the
objects in the set.”

Why is this useful?
● We can represent complex geometry (a character

model with 50,000 polygons) with a simplified
approximation (a box with 6 polygons) that can be
tested more quickly.

● Since the representation is inexact, so is the test
result.

6-October-2007 © Copyright Ian D. Romanick 2007

Desirable BV Characteristics
 Inexpensive intersection tests

6-October-2007 © Copyright Ian D. Romanick 2007

Desirable BV Characteristics
 Inexpensive intersection tests

● The whole point of using a BV instead of the source
geometry is to speed up rejection / acceptance tests
between geometric objects.

6-October-2007 © Copyright Ian D. Romanick 2007

Desirable BV Characteristics
 Inexpensive intersection tests

Tight fitting to source geometry

6-October-2007 © Copyright Ian D. Romanick 2007

Desirable BV Characteristics
 Inexpensive intersection tests

Tight fitting to source geometry
● If the BV is a poor representation of the source

geometry, tests between BVs will result in many
false positives or false negatives.

6-October-2007 © Copyright Ian D. Romanick 2007

Desirable BV Characteristics
 Inexpensive intersection tests

Tight fitting to source geometry

 Inexpensive to compute

6-October-2007 © Copyright Ian D. Romanick 2007

Desirable BV Characteristics
 Inexpensive intersection tests

Tight fitting to source geometry

 Inexpensive to compute
● If the BV is too expensive to compute, it may cancel

out any speed-up that it provides.

6-October-2007 © Copyright Ian D. Romanick 2007

Desirable BV Characteristics
 Inexpensive intersection tests

Tight fitting to source geometry

 Inexpensive to compute

Easy to transform

6-October-2007 © Copyright Ian D. Romanick 2007

Desirable BV Characteristics
 Inexpensive intersection tests

Tight fitting to source geometry

 Inexpensive to compute

Easy to transform
● Most interesting objects move. If the object moves,

its BV needs to move with it. If it is too difficult /
expensive to move, it may cancel out the speed-up.

6-October-2007 © Copyright Ian D. Romanick 2007

Desirable BV Characteristics
 Inexpensive intersection tests

Tight fitting to source geometry

 Inexpensive to compute

Easy to transform

 Inexpensive to store

6-October-2007 © Copyright Ian D. Romanick 2007

Desirable BV Characteristics
 Inexpensive intersection tests

Tight fitting to source geometry

 Inexpensive to compute

Easy to transform

 Inexpensive to store
● If the BV requires too much space to store or too

much time to access, it can negatively impact
performance.

6-October-2007 © Copyright Ian D. Romanick 2007

Axisaligned bounding box
One common BV is the axis-aligned bounding

box (AABB).

Just an n-dimensional box whose sides are
parallel to the axis and encloses all points.

6-October-2007 © Copyright Ian D. Romanick 2007

AABB Example

6-October-2007 © Copyright Ian D. Romanick 2007

AABB representation
Three common ways to represent an AABB

● All are equivalent, and each can easily be
converted to the other.

● Depending on the data used to create the AABB,
one representation may be easier to create than
another.

6-October-2007 © Copyright Ian D. Romanick 2007

Minimum / maximum point
class aabb_m_m {
 // Point such that for every
 // point P in the object:
 // (min.x <= P.x <= max.x) &&
 // (min.y <= P.y <= max.y) &&
 // (min.z <= P.z <= max.z)
 point min;
 point max;
};

6-October-2007 © Copyright Ian D. Romanick 2007

Min point / diameter
class aabb_m_d {
 // Point such that for every
 // point P in the object:
 // (min.x <= P.x) &&
 // (min.y <= P.y) &&
 // (min.z <= P.z)
 point min;

 // Size AABB in each dimension.
 point diameter;
};

6-October-2007 © Copyright Ian D. Romanick 2007

Center / radius
class aabb_c_r {
 // Center of the AABB.
 point center;

 // Distance from 'center' to each
 // side of the AABB.
 point radius;
};

6-October-2007 © Copyright Ian D. Romanick 2007

AABBAABB Intersection
AABB-AABB intersection is just an interval

overlap test extended to n-dimensions.
● If there is no overlap in any dimension, the AABBs

cannot intersect.

Examples:
● Do A = { c = { 1, 1 }, r = { 1, 2 } } and B = { c = { 3,

4 }, r = { 1, 1 } } intersect?

6-October-2007 © Copyright Ian D. Romanick 2007

AABBAABB Intersection
AABB-AABB intersection is just an interval

overlap test extended to n-dimensions.
● If there is no overlap in any dimension, the AABBs

cannot intersect.

Examples:
● Do A = { c = { 1, 1 }, r = { 1, 2 } } and B = { c = { 3,

4 }, r = { 1, 1 } } intersect?

● Do A = { c = { 1, 1 }, r = { 2, 2 } } and B = { c = { 3,
4 }, r = { 2, 2 } } intersect?

6-October-2007 © Copyright Ian D. Romanick 2007

AABBAABB Intersection (cont.)
bool aabb_c_r::intersect(aabb_c_r &box)
{
 const point dist = center – box.center;
 const point rad = radius + box.radius;

 if (abs(dist[0]) > (rad[0])) return false;
 if (abs(dist[1]) > (rad[1])) return false;
 if (abs(dist[2]) > (rad[2])) return false;

 return true;
}

6-October-2007 © Copyright Ian D. Romanick 2007

AABB Creation
Creating an initial AABB from source data is a

trivial O(n) problem.

6-October-2007 © Copyright Ian D. Romanick 2007

AABB Creation
Creating an initial AABB from source data is a

trivial O(n) problem.
● Scan all of the points tracking the minimum and

maximum value in each dimension. Convert the
resulting values to the desired representation.

As the object moves, how can we update the
AABB?
● Rotations are the problem.

6-October-2007 © Copyright Ian D. Romanick 2007

AABB from Bounding Sphere
For a given rotation:

1.Create a sphere centered at the point of rotation
that encompasses the object.

2.Create an AABB from that sphere.

Merits and drawbacks of this technique?

6-October-2007 © Copyright Ian D. Romanick 2007

AABB from Bounding Sphere
For a given rotation:

1.Create a sphere centered at the point of rotation
that encompasses the object.

2.Create an AABB from that sphere.

Merits and drawbacks of this technique?
● Fast to compute.

● Only works well if the object has a single pivot point.

● Creates a very loose AABB.

● Why not just use the bounding sphere?!?

6-October-2007 © Copyright Ian D. Romanick 2007

AABB from Source Data
Recalculate the AABB from the transformed

source data.
● Don't actually transform the points. Instead

transform the axis use for the comparisons.

Merits and drawbacks of this technique?

6-October-2007 © Copyright Ian D. Romanick 2007

AABB from Source Data
Recalculate the AABB from the transformed

source data.
● Don't actually transform the points. Instead

transform the axis use for the comparisons.

Merits and drawbacks of this technique?
● Creates a tight fitting AABB.

● O(n) per transformation can be too expensive.
• Can be optimized using other search structures and / or a

convex hull.
• More about convex hulls next week.

6-October-2007 © Copyright Ian D. Romanick 2007

AABB by Hillclimbing
Track the six points at the extrema of the AABB

To update, examine the neighboring points to
search for the new extrema.

Merits and drawbacks of this technique?

6-October-2007 © Copyright Ian D. Romanick 2007

AABB by Hillclimbing
Track the six points at the extrema of the AABB

To update, examine the neighboring points to
search for the new extrema.

Merits and drawbacks of this technique?
● Creates a tight fitting AABB.

● Fast, but...

● Requires precalculation of a convex hull

● Requires a data structure that stores connectivity
among points

6-October-2007 © Copyright Ian D. Romanick 2007

AABB from Rotated AABB
Transform the original AABB and compute its

AABB.

Merits and drawbacks of this technique?

6-October-2007 © Copyright Ian D. Romanick 2007

AABB from Rotated AABB
Transform the original AABB and compute its

AABB.

Merits and drawbacks of this technique?
● Fast.

● Not a very tight fitting AABB.

● Very commonly used.

6-October-2007 © Copyright Ian D. Romanick 2007

References
http://en.wikipedia.org/wiki/Bounding_volume

http://en.wikipedia.org/wiki/Bounding_volume

6-October-2007 © Copyright Ian D. Romanick 2007

Next week...
More bounding volumes...

● Bounding spheres

● Oriented bounding boxes

● k-DOPs

● Convex hulls

Something we can do with our BVs!

First programming assignment will be assigned.

6-October-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not necessarily

represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

