Data Structures \& Algorithms for Geometry

\bigcirc Agenda:

- Introduce course
- Linear algebra primer
- Introduce bounding volumes
- General BV characteristics
- Axis-aligned bounding boxes

What should you already know?

\rightleftharpoons C++ and object oriented programming

What should you already know?

ə C++ and object oriented programming

- For most assignments you will need to implement classes that conform to a very specific interface.

What should you already know?

Ə C++ and object oriented programming

- For most assignments you will need to implement classes that conform to a very specific interface.
θ Fundamental data structures

What should you already know?

〇 C++ and object oriented programming

- For most assignments you will need to implement classes that conform to a very specific interface.
\rightleftharpoons Fundamental data structures
- Most data structures for geometry are specialized versions of linked lists, binary trees, etc.

What should you already know?

〇 C++ and object oriented programming

- For most assignments you will need to implement classes that conform to a very specific interface.
คFundamental data structures
- Most data structures for geometry are specialized versions of linked lists, binary trees, etc.
- Some knowledge of linear algebra / vector math.

What should you already know?

〇 C++ and object oriented programming

- For most assignments you will need to implement classes that conform to a very specific interface.
คFundamental data structures
- Most data structures for geometry are specialized versions of linked lists, binary trees, etc.
- Some knowledge of linear algebra / vector math.
- Can probably pick most of it up on the way, but be prepared to work a little harder.

What will you learn?

ə Creation and operations on bounding volumes.

What will you learn?

\rightleftharpoons Creation and operations on bounding volumes.

- Bounding sphere, AABB, and OBB may be gibberish now, but they'll be second nature soon.

What will you learn?

- Creation and operations on bounding volumes.
- Bounding sphere, AABB, and OBB may be gibberish now, but they'll be second nature soon.
- Creation, traversal, and operations on bounding volume hierarchies.

What will you learn?

- Creation and operations on bounding volumes.
- Bounding sphere, AABB, and OBB may be gibberish now, but they'll be second nature soon.
- Creation, traversal, and operations on bounding volume hierarchies.
- This is where familiarity with tree structures is important.

What will you learn?

- Creation and operations on bounding volumes.
- Bounding sphere, AABB, and OBB may be gibberish now, but they'll be second nature soon.
\rightarrow Creation, traversal, and operations on bounding volume hierarchies.
- This is where familiarity with tree structures is important.
\rightleftharpoons Creation and traversal of space partitions.

What will you learn?

- Creation and operations on bounding volumes.
- Bounding sphere, AABB, and OBB may be gibberish now, but they'll be second nature soon.
\rightarrow Creation, traversal, and operations on bounding volume hierarchies.
- This is where familiarity with tree structures is important.
$七$ Creation and traversal of space partitions.
- Doom (the original) made BSP trees popular...now you get to implement one.

What will you learn? (cont.)

θ Representation and storage of polygons.

What will you learn? (cont.)

θ Representation and storage of polygons.

- May seem trivial, but what if you want to operate on all the polygons that share a vertex?

What will you learn? (cont.)

Ə Representation and storage of polygons.

- May seem trivial, but what if you want to operate on all the polygons that share a vertex?
\quad Numerical stability and geometrical robustness.

What will you learn? (cont.)

ə Representation and storage of polygons.

- May seem trivial, but what if you want to operate on all the polygons that share a vertex?
$\operatorname{~Numerical~stability~and~geometrical~robustness.~}$
- Floating point math is inexact. This can cause problems. Big problems.

How will you be graded?

- Bi-weekly quizzes worth 5 points each.
- A final exam worth 50 points.
- Bi-weekly programming assignments with 10 points each.
Ə A term project worth 50 points.

How will programs be graded?

ə First and foremost, does the program produce the correct output?
\ominus Are appropriate algorithms and data-structures used?

Is the code readable and clear?

Linear algebra primer

- Three important data types:
- Scalar values
- Row / column vectors
- 1×4 and 4×1 are the sizes we'll most often encounter
- Square matrices
- 4×4 is the size we'll most often encounter

Scalars

\rightleftharpoons These are the numbers you know!

- Example: 3.14, 5.0, 99.9, $\sqrt{2}$, etc.

Row vectors

θ These are special matrices that have multiple columns but only one row.

- Example: $\left.\begin{array}{lll}5.0 & 3.14 & 37\end{array}\right]$
- Add and subtract the way you would expect.
- Example: $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]+\left[\begin{array}{lll}9 & 10 & 11\end{array}\right]=\left[\begin{array}{lll}10 & 12 & 14\end{array}\right]$
- Both vectors must be the same size.
- Operate with scalars the way you would expect.
- Example: $3.2 \times\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]=\left[\begin{array}{lll}3.2 & 6.4 & 9.6\end{array}\right]$
\quad Notice that vector multiplication is missing...

Column vectors

θ These are special matrices that have multiple rows but only one column.

- Example: $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$

Ə Work just like row vectors.

Vector operations

ϑ There are only a few operations specific to vectors that are really important for us.

Dot Product

\rightleftharpoons Noted as a "dot" between two vectors (e.g., A•B)

- Also known as "inner product."
- Multiply matching elements, sum all the results.
- Example:

$$
\left[\begin{array}{ll}
2.3 & 1.2
\end{array}\right] \cdot\left[\begin{array}{ll}
1.7 & 6.5
\end{array}\right]=(2.3 * 1.7)+(1.2 * 6.5)=11.71
$$

Why is the dot product so interesting?

- In 3-space, the dot of two unit vectors is the cosine of the angle between the two vectors.
- If the vectors are not already normalized (unit length), we can divide the dot product by the magnitudes.
- Example:

$$
\frac{a \cdot b}{|a||b|}=\cos \theta
$$

Vector Magnitude

- Noted by vertical bars, like absolute value.

Take the square root of the dot product of the vector with itself...like absolute value.
ə Result is the magnitude (a.k.a. length) of the vector.

- Example:

$$
\begin{gathered}
\left.\left[\begin{array}{ll}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{array}\right]=\sqrt{\left[\frac{\sqrt{2}}{2}\right.} \frac{\sqrt{2}}{2}\right] \cdot\left[\begin{array}{ll}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{array}\right]= \\
\sqrt{\left(\frac{\sqrt{2}}{2}\right)^{2}+\left(\frac{\sqrt{2}}{2}\right)^{2}}=\sqrt{\frac{2}{4}+\frac{2}{4}}=1
\end{gathered}
$$

Normalize

- Noted by dividing a vector by its magnitude.
- Example: $\frac{A}{|A|}$
\ominus Results in a vector with the same direction, but a magnitude of 1.0.
\quad Works the same as with scalars.

Cross Product

- Noted as an X between two vectors (e.g., $a \times b$)
\rightleftharpoons Derivation of the cross product is not important. The math is:

$$
a \times b=\left[\begin{array}{lll}
a_{y} b_{z}-a_{z} b_{y} & a_{z} b_{x}-a_{x} b_{z} & a_{x} b_{y}-a_{y} b_{x}
\end{array}\right]
$$

\bigcirc Only valid in 3-dimensions.

Why is the cross product so interesting?

© Two really useful properties.

- The result of the cross product between two vectors is a new vector that is perpendicular (also called normal) to both vectors.
- If the source vectors are normalized:

$$
|a \times b|=\sin \theta
$$

Matrices

- Like vectors, but have multiple rows and columns.
- Example: $\left[\begin{array}{llll}1.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0\end{array}\right]$

ค Add and subtract like you would expect.

- Like vectors, both matrices must be the same size...in both dimensions.

Matrix / vector multiplication

ə Special rules apply that make it different from scalar multiplication.

- Not commutative! e.g., $M \times N \neq N \times M$
- Is associative. e.g., ($N M$) $P=N(M P)$
- Column count of first matrix must match row count of second matrix.
- If M is a 4-by-3 matrix and N is a 3-by-1 matrix, we can do $M \times N$, but not $N \times M$.
- If the source matrices are n-by-m and m-by-p, the resulting matrix will be n-by-p.

Matrix / vector multiplication (cont.)

\quad To calculate an element of the matrix, C, resulting from AB:

$$
C_{i j}=\sum_{r=1}^{n} a_{i r} b_{r j}
$$

- What does this look like?

Matrix / vector multiplication (cont.)

〇To calculate an element of the matrix, C , resulting from AB:

$$
C_{i j}=\sum_{r=1}^{n} a_{i r} b_{r j}
$$

\ominus What does this look like?

- The dot product of a row of A with a column of B.
- This is why the column count of A must match the row count of B...otherwise the dot product wouldn't work.

Transpose

〇 Noted by a "T" in the exponent position (e.g., M ${ }^{T}$).
-The rows become the columns, and the columns become the rows.

- Example:

$$
\left[\begin{array}{ll}
2 & 3 \\
4 & 5 \\
6 & 7
\end{array}\right]^{T}=\left[\begin{array}{lll}
2 & 4 & 6 \\
3 & 5 & 7
\end{array}\right]
$$

References

http://en.wikipedia.org/wiki/Matrix_multiplication http://en.wikipedia.org/wiki/Dot_product http://en.wikipedia.org/wiki/Cross_product

Break

Bounding Volumes

- From Wikipedia:
"...a bounding volume for a set of objects is a closed volume that completely contains the union of the objects in the set."
- Why is this useful?

Bounding Volumes

\ominus From Wikipedia:
"...a bounding volume for a set of objects is a closed volume that completely contains the union of the objects in the set."
∂ Why is this useful?

- We can represent complex geometry (a character model with 50,000 polygons) with a simplified approximation (a box with 6 polygons) that can be tested more quickly.
- Since the representation is inexact, so is the test result.

Desirable BV Characteristics

O Inexpensive intersection tests

Desirable BV Characteristics

O Inexpensive intersection tests

- The whole point of using a BV instead of the source geometry is to speed up rejection / acceptance tests between geometric objects.

Desirable BV Characteristics

O Inexpensive intersection tests
θ Tight fitting to source geometry

Desirable BV Characteristics

Ə Inexpensive intersection tests
$\boldsymbol{\rightharpoonup}$ Tight fitting to source geometry

- If the BV is a poor representation of the source geometry, tests between BVs will result in many false positives or false negatives.

Desirable BV Characteristics

O Inexpensive intersection tests

- Tight fitting to source geometry
- Inexpensive to compute

Desirable BV Characteristics

O Inexpensive intersection tests
θ Tight fitting to source geometry

- Inexpensive to compute
- If the BV is too expensive to compute, it may cancel out any speed-up that it provides.

Desirable BV Characteristics

O Inexpensive intersection tests

- Tight fitting to source geometry
- Inexpensive to compute
- Easy to transform

Desirable BV Characteristics

Ə Inexpensive intersection tests

- Tight fitting to source geometry
- Inexpensive to compute
- Easy to transform
- Most interesting objects move. If the object moves, its BV needs to move with it. If it is too difficult / expensive to move, it may cancel out the speed-up.

Desirable BV Characteristics

O Inexpensive intersection tests
θ Tight fitting to source geometry

- Inexpensive to compute
- Easy to transform

Ə Inexpensive to store

Desirable BV Characteristics

- Inexpensive intersection tests
- Tight fitting to source geometry
- Inexpensive to compute
- Easy to transform
- Inexpensive to store
- If the BV requires too much space to store or too much time to access, it can negatively impact performance.

Axis-aligned bounding box

\rightleftharpoons One common BV is the axis-aligned bounding box (AABB).
Э Just an n-dimensional box whose sides are parallel to the axis and encloses all points.

AABB Example

AABB representation

θ Three common ways to represent an AABB

- All are equivalent, and each can easily be converted to the other.
- Depending on the data used to create the AABB, one representation may be easier to create than another.

Minimum / maximum point

class aabb_m $_$m \{
// Point such that for every // point P in the object: // (min.x <= P.x <= max.x) \&\& // (min.y <= P.y <= max.y) \&\& // (min.z <= P.z <= max.z) point min; point max;
\};

Min point / diameter

class aabb_m_d \{
// Point such that for every // point P in the object:
// (min. x <= P.x) \&\&
// (min.y <= P.y) \&\&
// (min.z <= P.z)
point min;
// Size AABB in each dimension. point diameter;
© Copyright Ian D. Romanick 2007

Center / radius

class aabb_c_r \{ // Center of the AABB. point center;
// Distance from 'center' to each // side of the AABB. point radius;
\};

AABB-AABB Intersection

\ominus AABB-AABB intersection is just an interval overlap test extended to n-dimensions.

- If there is no overlap in any dimension, the AABBs cannot intersect.
- Examples:
- Do $A=\{c=\{1,1\}, r=\{1,2\}\}$ and $B=\{c=\{3$, $4\}, r=\{1,1\}\}$ intersect?

AABB-AABB Intersection

\ominus AABB-AABB intersection is just an interval overlap test extended to n-dimensions.

- If there is no overlap in any dimension, the AABBs cannot intersect.
- Examples:
- Do $A=\{c=\{1,1\}, r=\{1,2\}\}$ and $B=\{c=\{3$, $4\}, r=\{1,1\}\}$ intersect?
- Do $A=\{c=\{1,1\}, r=\{2,2\}\}$ and $B=\{c=\{3$, $4\}, r=\{2,2\}\}$ intersect?

AABB-AABB Intersection (cont.)

```
bool aabb_c_r::intersect(aabb_c_r &box)
{
    const point dist = center - box.center;
    const point rad = radius + box.radius;
    if (abs(dist[0]) > (rad[0])) return false;
    if (abs(dist[1]) > (rad[1])) return false;
    if (abs(dist[2]) > (rad[2])) return false;
    return true;
}
```


AABB Creation

\rightarrow Creating an initial AABB from source data is a trivial $O(\mathrm{n})$ problem.

AABB Creation

\rightarrow Creating an initial AABB from source data is a trivial $O(n)$ problem.

- Scan all of the points tracking the minimum and maximum value in each dimension. Convert the resulting values to the desired representation.
\uparrow As the object moves, how can we update the AABB?
- Rotations are the problem.

AABB from Bounding Sphere

\rightleftharpoons For a given rotation:
1.Create a sphere centered at the point of rotation that encompasses the object.
2. Create an AABB from that sphere.
\quad Merits and drawbacks of this technique?

AABB from Bounding Sphere

\rightleftharpoons For a given rotation:
1.Create a sphere centered at the point of rotation that encompasses the object.
2. Create an AABB from that sphere.
\quad Merits and drawbacks of this technique?

- Fast to compute.
- Only works well if the object has a single pivot point.
- Creates a very loose AABB.
- Why not just use the bounding sphere?!?

AABB from Source Data

〇 Recalculate the AABB from the transformed source data.

- Don't actually transform the points. Instead transform the axis use for the comparisons.
ϑ Merits and drawbacks of this technique?

AABB from Source Data

- Recalculate the AABB from the transformed source data.
- Don't actually transform the points. Instead transform the axis use for the comparisons.
- Merits and drawbacks of this technique?
- Creates a tight fitting AABB.
- O(n) per transformation can be too expensive.
- Can be optimized using other search structures and / or a convex hull.
- More about convex hulls next week.

AABB by Hill-climbing

Э Track the six points at the extrema of the AABB
\supset To update, examine the neighboring points to search for the new extrema.
\quad Merits and drawbacks of this technique?

AABB by Hill-climbing

Э Track the six points at the extrema of the AABB
\supset To update, examine the neighboring points to search for the new extrema.
\supset Merits and drawbacks of this technique?

- Creates a tight fitting AABB.
- Fast, but...
- Requires precalculation of a convex hull
- Requires a data structure that stores connectivity among points

AABB from Rotated AABB

\rightleftharpoons Transform the original AABB and compute its AABB.

- Merits and drawbacks of this technique?

AABB from Rotated AABB

\rightleftharpoons Transform the original AABB and compute its AABB.

- Merits and drawbacks of this technique?
- Fast.
- Not a very tight fitting AABB.
- Very commonly used.

Refererences

http://en.wikipedia.org/wiki/Bounding_volume

Next week...

- More bounding volumes...
- Bounding spheres
- Oriented bounding boxes
- k-DOPs
- Convex hulls
- Something we can do with our BVs!
- First programming assignment will be assigned.

Legal Statement

- This work represents the view of the authors and does not necessarily represent the view of IBM or the Art Institute of Portland.
○ OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other countries, or both.
- Khronos and OpenGL ES are trademarks of the Khronos Group.
- Other company, product, and service names may be trademarks or service marks of others.

